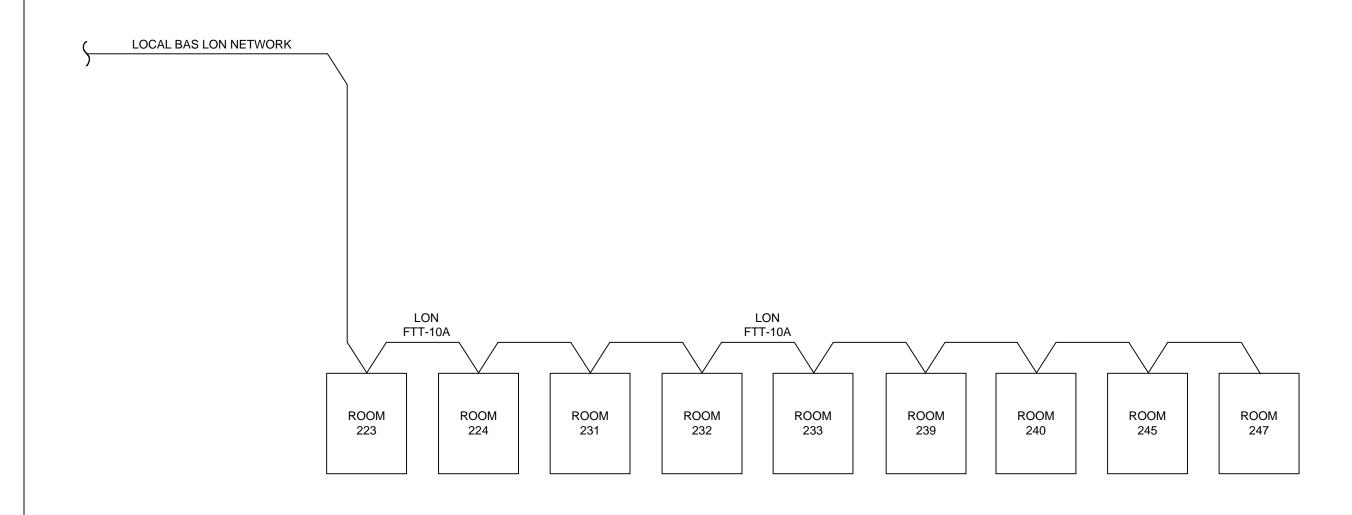

TRIATEK, INC. STANDARD DRAWINGS VOLUMETRIC OFFSET

SAMPLE BILL OFF MATERIALS

BILL OF MATERIALS						
TRIATEK PART#	RIATEK PART# DESCRIPTION					
VV08ANFAPC	8" Aluminum Venturi Valve with/ fast acting electric actuator Partially Closed	2				
VV012ANFAPC	12" Aluminum Venturi Valve with/ fast acting electric actuator Partially Closed	1				
VV012HNFAPC	12" Aluminum Venturi Valve with/ fast acting electric actuator Partially Closed	2				
VV016ANFAPC	16" Aluminum Venturi Valve with/ fast acting electric actuator Partially Closed	2				
VV312ANFAPC	3-12" Ganged Aluminum Venturi Valve with/ fast acting electric actuators Partially Closed	2				
VAV-1000L	VAV LON Controller	7				
HMS1622-L	FUME HOOD MONITOR / CONTROLLER	2				
POS-100	SASH POSITION SENSOR	2				
TRIGATE	LON - N2 GATE WAY	1				
TLON-G-02	TRIATEK LON GATEWAY W/ DIAL-UP	1				


SAMPLE VALVE SCHEDULE

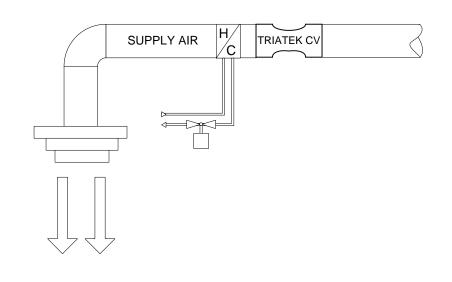
Room Name	Valve Tag	Designated Use	Triatek Part Number	Airflow CFM	Minimum Airflow CFM
003 Bio TL Intro Bio	EAV-A003	HOOD	VV010HNCVPC	500	500
006 Bio Museum / Herb.	EAV-A006A	HOOD	VV08HNCVPC	60	60
	EAV-A006B	HOOD	VV010HNCVPC	500	500
021 Geo Rock Prep	EAV-A021	HOOD	VV08HNCVPC	80	80
102 Lecture Hall	EAV-A102	HOOD	VV010HNCVPC	500	500
120 Geo Lab Service	EAV-A120	HOOD	VV010HNCVPC	500	500
129 Geo Rock Prep	EAV-A129	HOOD	VV08HNCVPC	100	100
201 Bio Glasswash	EAV-A201	HOOD	VV010HNCVPC	700	700
202 Bio Media Prep	EAV-A202	HOOD	VV010HNCVPC	500	500
202A Bio Clean Room	EAV-A202A	HOOD	VV012HNCVPC	800	800
203 Bio Cage Prep	EAV-A203	HOOD	VV08HNCVPC	350	350
204 Molec. Bio	EAV-A204	HOOD	VV012HNCVPC	800	800
205 Develop Bio	EAV-A205	HOOD	VV012HNCVPC	800	800
208 Micro Bio Lab	EAV-A208	HOOD	VV012HNCVPC	800	800
209A Molec Bio SP	EAV-A209A	HOOD	VV010HNCVPC	400	400
	EAV-A209B	HOOD	VV010HNCVPC	400	400
212 Bio TL Service	EAV-A212	HOOD	VV010HNCVPC	650	650
215 Bio TL Service	EAV-A215	HOOD	VV010HNCVPC	500	500
218 Bio TL Service	EAV-A218	HOOD	VV010HNCVPC	500	500
221 Bio TL Service	EAV-A221	HOOD	VV010HNCVPC	500	500
224 Bio TL Service	EAV-A224	HOOD	VV010HNCVPC	500	500
227 Bio Human Anat	EAV-A227	HOOD	VV012HNCVPC	800	800
227A Bio Cad Rm	EAV-A227A	HOOD	VV210HNCVPC	1500	1500
230 Marine Ecol.	EAV-A230	HOOD	VV012HNCVPC	800	800
231 TL Ecology	EAV-A231	HOOD	VV010HNCVPC	650	650
234 Bio TL Service	EAV-A234	HOOD	VV010HNCVPC	500	500
237 Bio TL Service	EAV-A237	HOOD	VV010HNCVPC	650	650
240 Bio TL Service	EAV-A240	HOOD	VV010HNCVPC	500	500
243 Bio TL Service	EAV-A243	HOOD	VV010HNCVPC	650	650
301 Phys TL Service	EAV-A301	HOOD	VV010HNCVPC	650	650
304 Phys Specl Inst	EAV-A304	HOOD	VV010HNCVPC	650	650
305 Analytical lab	EAV-A305	HOOD	VV010HNCVPC	650	650
311 Phys TL Class	EAV-A311	HOOD	VV010HNCVPC	650	650
314 Chem TL Service	EAV-A314	HOOD	VV012HNCVPC	800	800
011 0110111 12 0011100	EAV-B314	HOOD	VV012HNCVPC	800	800
	EAV-C314	HOOD	VV012HNCVPC	800	800
	EAV-D317	HOOD	VV012HNCVPC	800	800
317 Chem TL Service	EAV-A317	HOOD	VV012HNCVPC	800	800
OTT OHOHI TE OGIVICE	EAV-B317	HOOD	VV012HNCVPC	800	800
320 Chem TL	EAV-B317	HOOD	VV012HNCVPC	800	800
OZO OHOHI IL	EAV-A320	HOOD	VV012HNCVPC	800	800
	EAV-B320	HOOD	VV012HNCVPC	800	800
	EAV-C320 EAV-D321	HOOD	VV012HNCVPC	60	60
222 Inetr Pron		+			
322 Instr Prep	EAV-A322 EAV-B322	HOOD	VV012HNCVPC VV08HNCVPC	500 255	500 255

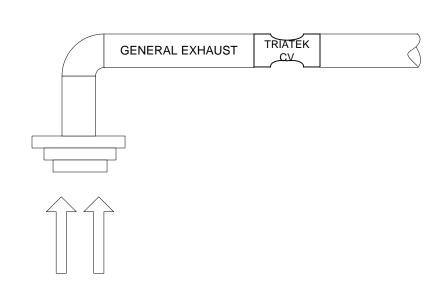
Room Name	Valve Tag	Designated Use	Triatek Part Number	Airflow CFM	Minimum Airflow CFM
323 Organic Chem	SAV-A323	SUPPLY	VV212ANFAPC	2100	2100
	SAV-B323	SUPPLY	VV212ANFAPC	2100	2100
	SAV-C323	SUPPLY	VV212ANFAPC	2100	2100
	SAV-D323	SUPPLY	VV212ANFAPC	2100	2100
	SAV-E323	SUPPLY	VV212ANFAPC	1400	1400
	EAV-A323	HOOD	VV012HNFAPC	1100	1100
	EAV-B323	HOOD	VV012HNFAPC	1100	1100
	EAV-C323	HOOD	VV012HNFAPC	1100	1100
	EAV-D323	HOOD	VV012HNFAPC	1100	1100
	EAV-E323	HOOD	VV012HNFAPC	1100	1100
	EAV-F323	HOOD	VV012HNFAPC	1100	1100
	EAV-G323	HOOD	VV012HNFAPC	1100	1100
	EAV-H323	HOOD	VV012HNFAPC	1100	1100
	EAV-I323	HOOD	VV012HNFAPC	1100	1100
	EAV-J323	HOOD	VV012HNFAPC	1100	1100
326 Chem TL Gen	EAV-A326	HOOD	VV012HNCVPC	800	800
	EAV-B326	HOOD	VV012HNCVPC	800	800
	EAV-C326	HOOD	VV012HNCVPC	800	800
327 Cem Inst Prep	EAV-A327	HOOD	VV08HNCVPC	175	175
	EAV-B327	HOOD	VV08HNCVPC	175	175
	EAV-C327	HOOD	VV08HNCVPC	250	250
328 Quant Analy	EAV-A328	HOOD	VV012HNCVPC	800	800
	EAV-B328	HOOD	VV012HNCVPC	800	800
	EAV-C328	HOOD	VV012HNCVPC	800	800
329 Gen Storage	EAV-A329	HOOD	VV012HNCVPC	800	800
	EAV-B329	HOOD	VV08HNCVPC	60	60

SYMBOL KEY	NOTES	ACKNO	DWLEDGEMENTS	<u> </u>	
		REVISION DATE			TEK®
			DRAWN BY: GDW	2976 PACIFIC DR. NORCROSS, GA 30071 TEL. 7	770-242-1922 FAX 770-242-1944
		ENGINEE	R PROJECT:	SAMPLE	DWG NO.: V1
		NA		Valve Schedule	Page: 3 of 17

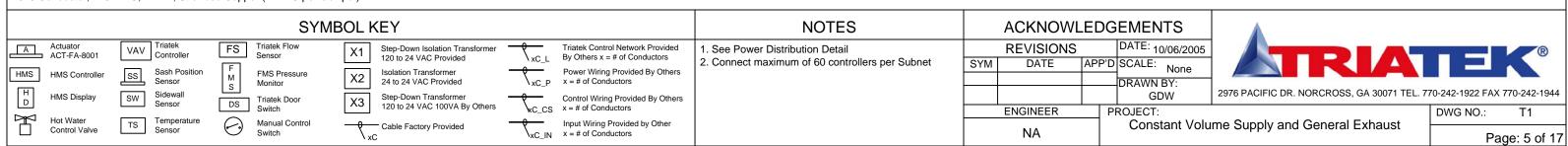
SAMPLE COMMUNICATION RISER

Cable Specifications


Doubly-Terminated Bus Topology Specifications						
Cable Type	Maximum bus length	Units				
Belden 85102	2700	Meters				
Belden 8471	2700	Meters				
Level IV, 22AWG	1400	Meters				
JY(St) Y 2x2x0.8	900	Meters				
TIA Category 5	900	Meters				

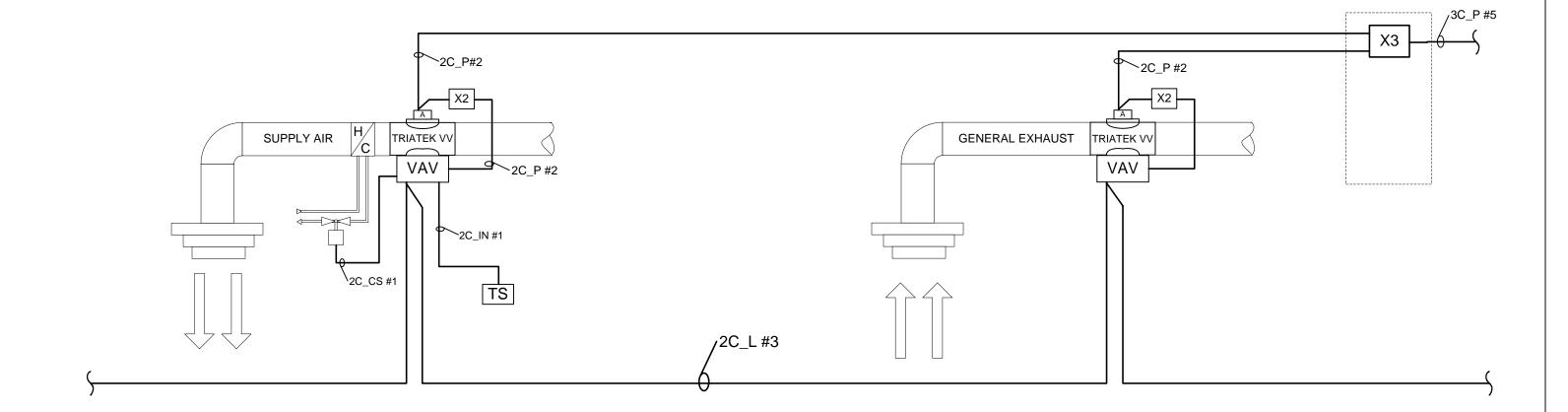

Free Topology Specifications							
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units				
Belden 85102	500	500	Meters				
Belden 8471	400	500	Meters				
Level IV, 22AWG	400	500	Meters				
JY(St) Y 2x2x0.8	320	500	Meters				
TIA Category 5	250	450	Meters				

Refer to www.lonmark.org for more details.

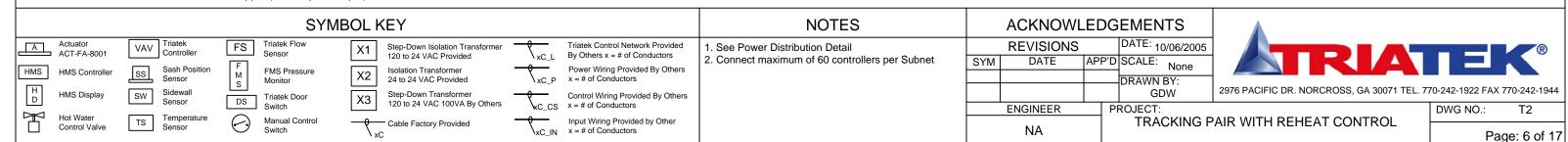

- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)
- #3. 1 Pair, #22 AWG, Belden 85102 Recommended
- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)

			SYM	IBOL KEY			NOTES		ACKNOWL	LEDGE	MENTS			
	Actuator ACT-FA-8001	VAV Triatek Controller	FS Triatek Flow Sensor	X1 Step-Down Isolation Transformer 120 to 24 VAC Provided	\ xC_L	Triatek Control Network Provided By Others x = # of Conductors	See Power Distribution Detail Connect maximum of 60 controllers per Subnet	SYM	REVISIONS DATE	D/ APP'D SO	ATE: 05/20/2005			®
H	MS HMS Controller	SS Sash Position Sensor	F FMS Pressure Monitor	X2 Isolation Transformer 24 to 24 VAC Provided	XC_P	Power Wiring Provided By Others x = # of Conductors		31101	DATE	+	RAWN BY:			
	H HMS Display	SW Sidewall Sensor	DS Triatek Door Switch	X3 Step-Down Transformer 120 to 24 VAC 100VA By Others		Control Wiring Provided By Others x = # of Conductors			ENGINEER	PRO	GDW JECT:	2976 PACIFIC DR. NORCROSS, GA 30071 TEL	. 770-242-1922 FAX DWG NO.:	R1
	Hot Water Control Valve	TS Temperature Sensor	Manual Control Switch	Cable Factory Provided	xc_in	Input Wiring Provided by Other x = # of Conductors			NA	1110		SAMPLE ommunication Riser		age: 4 of 17

- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)
- #3. 1 Pair, #22 AWG, Belden 85102 Recommended
- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)
- #6. 3 Conductor, #18 AWG, THHN, Stranded Copper (24VDC power/input)


Sequence of Operation

VAV Supply and General Exhaust


The Lab Flow Controller will modulate the general exhaust air valve and/or the supply air valve, and the reheat coil valve to maintain the room's desired CFM offset setpoint, satisfy room cooling/heating load, and maintain minimum supply air without exhausting excess air. The controller can be connected to the Building Automation System via LON 'FTT' communication network interface to provide remote monitoring / setpoint adjustment, and to provide occupied/unoccupied status indication.

FAIL-SAFE MODE

All exhaust valves will fail to the full open position upon loss of power to either the controller or actuator, or loss of analog control signal from the controller to the actuator. All supply valves will fail to its minimum position upon loss of power to the controller or actuator, or loss of analog control signal from the controller to the actuator.

- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)
- #3. 1 Pair, #22 AWG, Belden 85102 Recommended
- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)
- #6. 3 Conductor, #18 AWG, THHN, Stranded Copper (24VDC power/input)

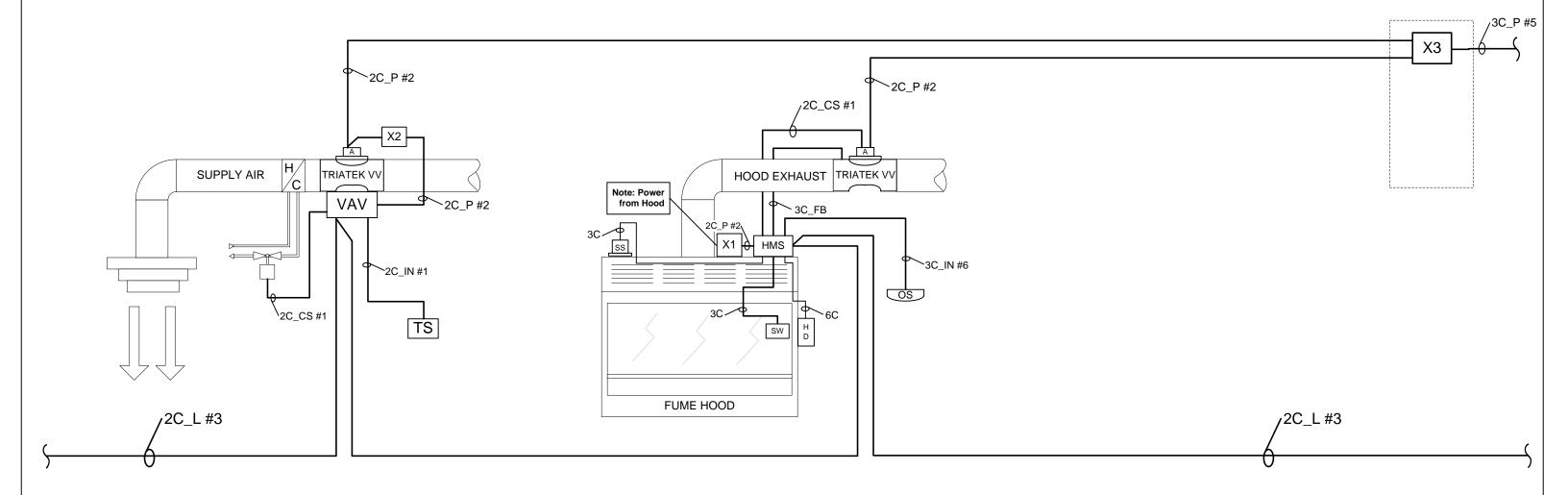
Sequence of Operation

HMS - Fume Hood Monitoring System

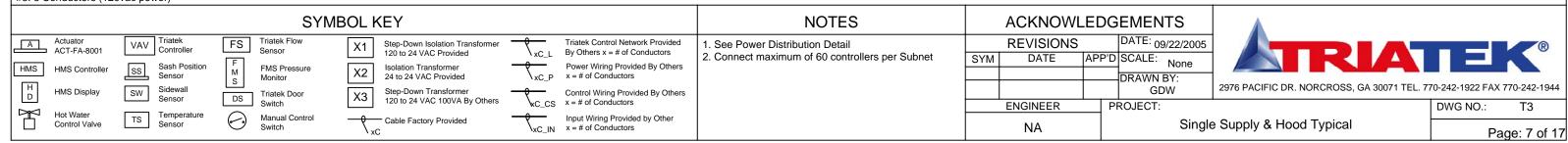
The Fume Hood Controller will modulate the Fume Hood's exhaust air valve to maintain

the desired face velocity set point. The System's speed of response to sash movement will provide adequate containment of hazardous fumes. Alarms will be enabled whenever the face velocity set point can not be achieved by the exhaust system, or whenever face velocity rises above the high alarm limit. Audible and visual alarms will be provided locally. The controller can be connected to the Building Automation System via LON 'FTT' communication network interface to provide remote monitoring / setpoint adjust.

Emergency purge operation is via the 'MAX FLOW' touch-pad button. The Fume Hood's Exhaust valve maximum position will be equal to the Fume Hood's high CFM limit.


VAV Supply and Fume Hood Exhaust

The Lab Flow Controller will modulate the supply air valve, and the reheat coil valve to maintain the room's desired CFM offset setpoint, satisfy room cooling/heating load, and maintain minimum supply air without exhausting excess air.


The System's speed of response to Fume Hood exhaust requirements will provide adequate containment of Room air. The controller can be connected to the Building Automation System via LON 'FTT' communication network interface to provide remote monitoring / setpoint adjustment, and to provide occupied/unoccupied status indication.

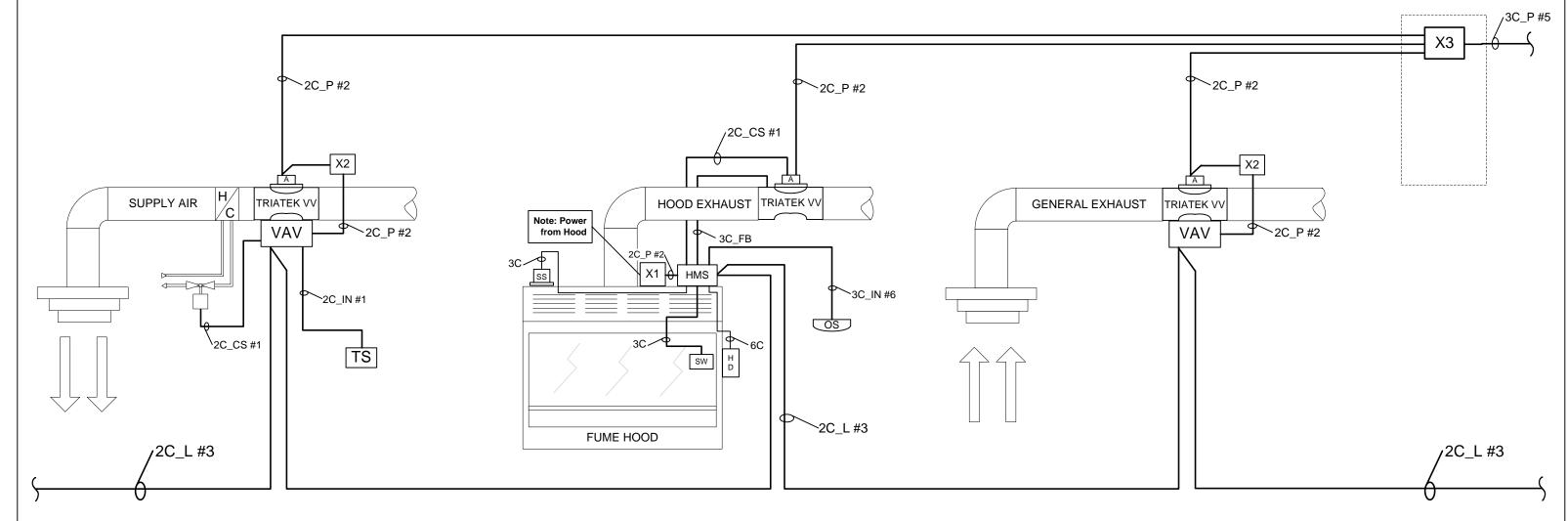
FAIL-SAFE MODE

All exhaust valves will fail to the full open position upon loss of power to either the controller or actuator, or loss of analog control signal from the controller to the actuator. All supply valves will fail to its minimum position upon loss of power to the controller or actuator, or loss of analog control signal from the controller to the actuator.

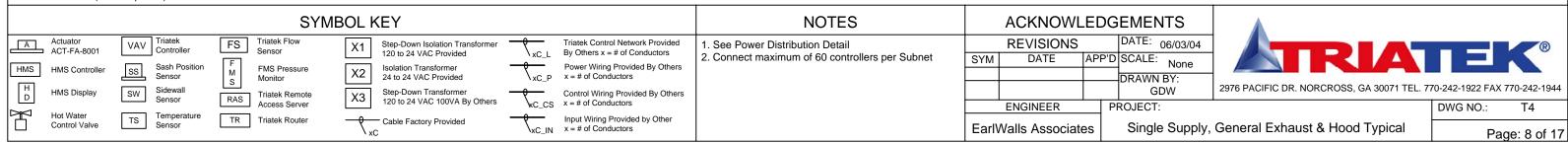
- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)
- #3. 1 Pair, #22 AWG, Belden 85102 Recommended
- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)

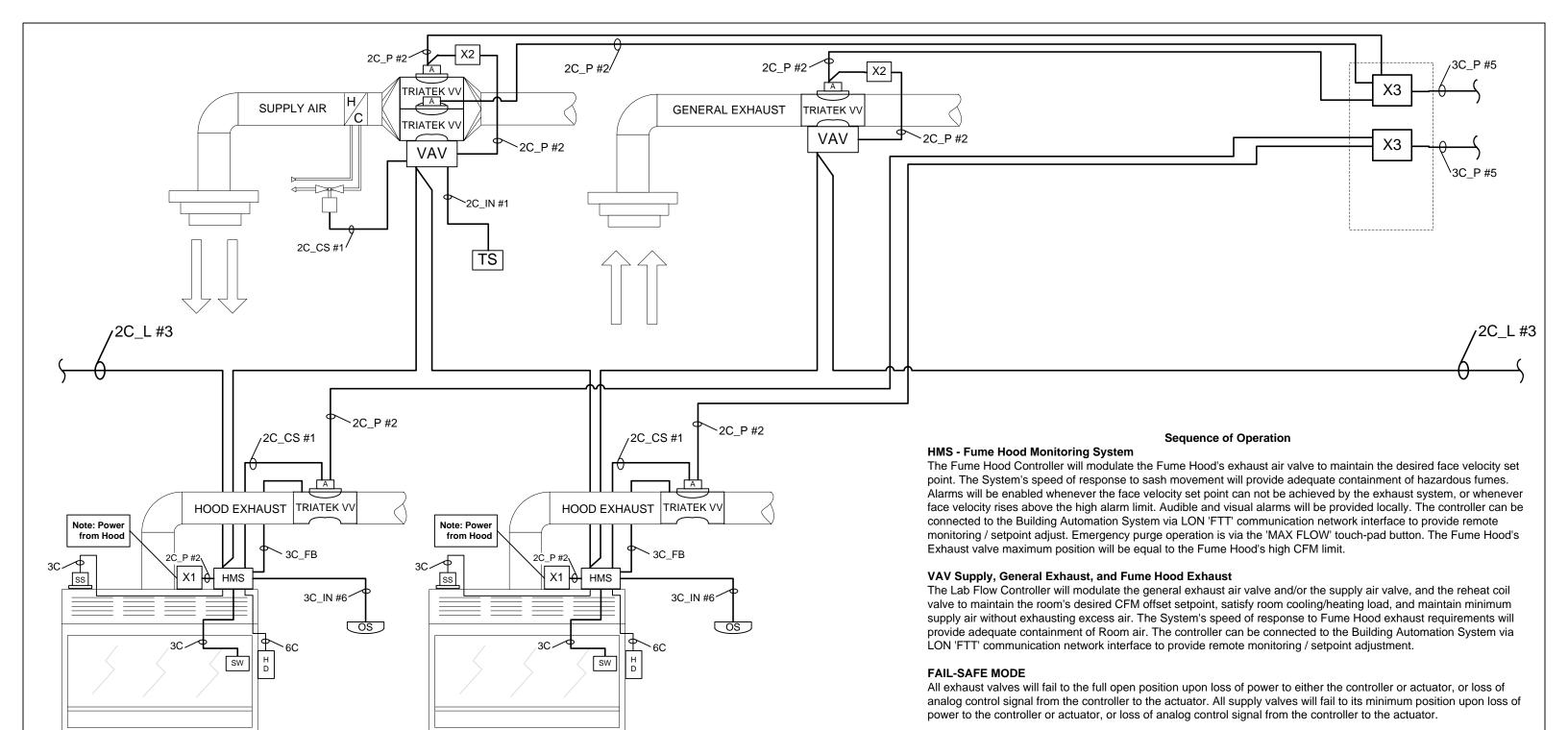
Sequence of Operation

HMS - Fume Hood Monitoring System


The Fume Hood Controller will modulate the Fume Hood's exhaust air valve to maintain the desired face velocity set point. The System's speed of response to sash movement will provide adequate containment of hazardous fumes. Alarms will be enabled whenever the face velocity set point can not be achieved by the exhaust system, or whenever face velocity rises above the high alarm limit. Audible and visual alarms will be provided locally. The controller can be connected to the Building Automation System via LON 'FTT' communication network interface to provide remote monitoring / setpoint adjust. Emergency purge operation is via the 'MAX FLOW' touch-pad button. The Fume Hood's Exhaust valve maximum position will be equal to the Fume Hood's high CFM limit.

VAV Supply, General Exhaust, and Fume Hood Exhaust


The Lab Flow Controller will modulate the general exhaust air valve and/or the supply air valve, and the reheat coil valve to maintain the room's desired CFM offset setpoint, satisfy room cooling/heating load, and maintain minimum supply air without exhausting excess air. The System's speed of response to Fume Hood exhaust requirements will provide adequate containment of Room air. The controller can be connected to the Building Automation System via LON 'FTT' communication network interface to provide remote monitoring / setpoint adjustment.


FAIL-SAFE MODE

All exhaust valves will fail to the full open position upon loss of power to either the controller or actuator, or loss of analog control signal from the actuator. All supply valves will fail to its minimum position upon loss of power to the controller or actuator, or loss of analog control signal from the controller to the actuator.

- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)
- #3. 1 Pair, #22 AWG, Belden 85102 Recommended
- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)

CABLE LEGEND

Actuator

HMS Controller

HMS Display

Control Valve

Hot Water

Α

HMS

- #1. 1 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #2. 2 Conductor, #18 AWG, THHN, Stranded Copper (24vac power)

VAV | I riatek Controller

Sash Position

Sensor

Sidewall

Sensor

#3. 1 Pair, #22 AWG, Belden 85102 Recommended

SW

TS

FUME HOOD

#4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)

FS

- #5. 3 Conductors (120vac power)
- #6. 3 Conductor, #18 AWG, THHN, Stranded Copper (24VDC power/input)

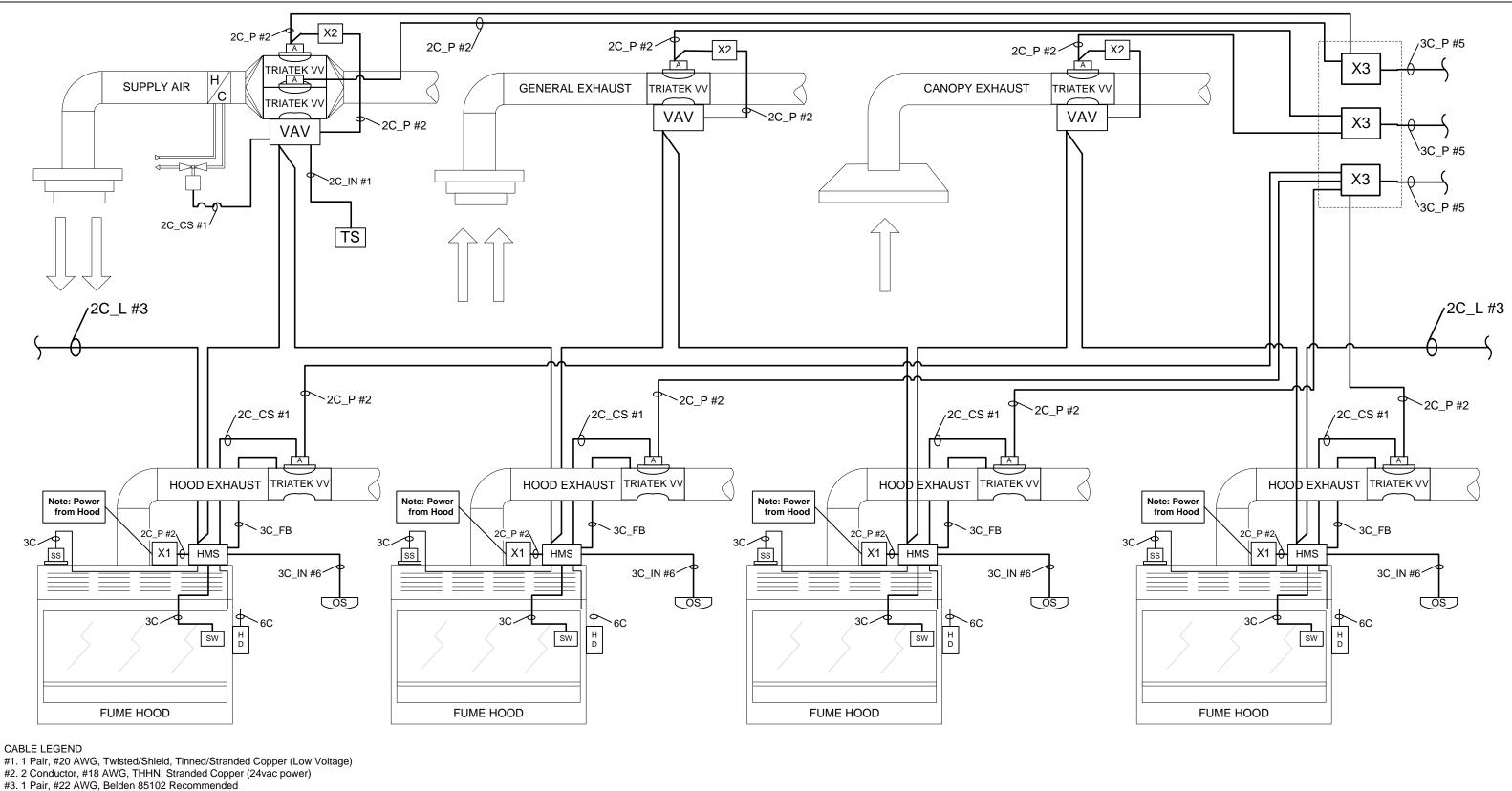
NOTES SYMBOL KEY **ACKNOWLEDGEMENTS** DATE: 10/06/2005 **REVISIONS** Triatek Flow Step-Down Isolation Transformer Triatek Control Network Provided . See Power Distribution Detail APP'D SCALE: None 120 to 24 VAC Provided By Others x = # of Conductors SYM DATE 2. Connect maximum of 60 controllers per LON Subnet Power Wiring Provided By Others Isolation Transformer X2 DRAWN BY: 24 to 24 VAC Provided x = # of Conductors GDW Step-Down Transformer Control Wiring Provided By Others Х3 120 to 24 VAC 100VA By Others

Input Wiring Provided by Other

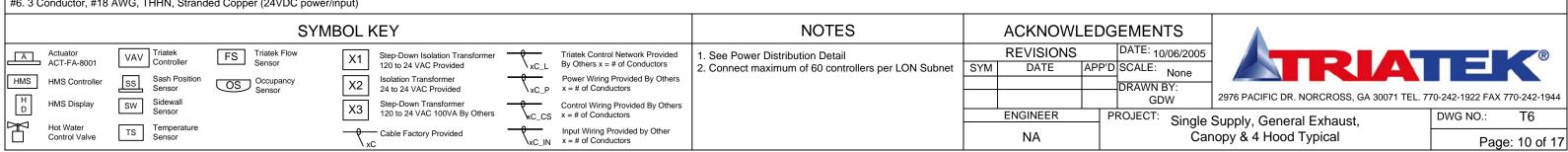
x = # of Conductors

FUME HOOD

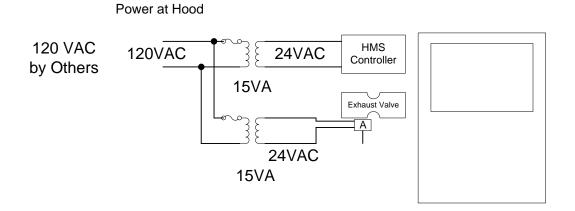
Cable Factory Provided

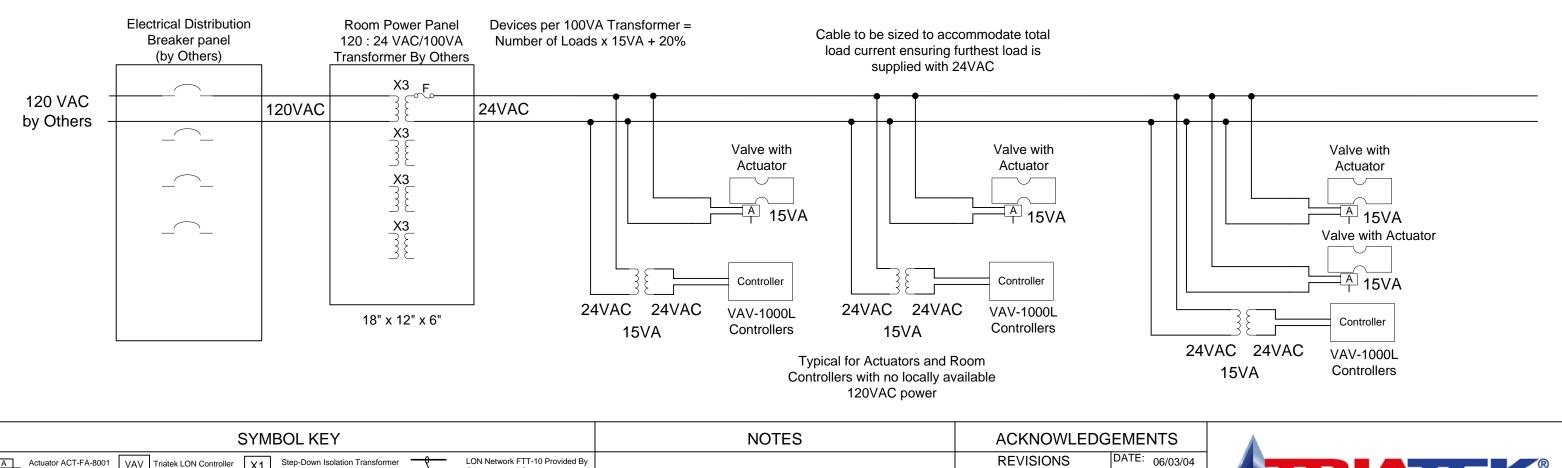

2976 PACIFIC DR. NORCROSS, GA 30071 TEL. 770-242-1922 FAX 770-242-1944

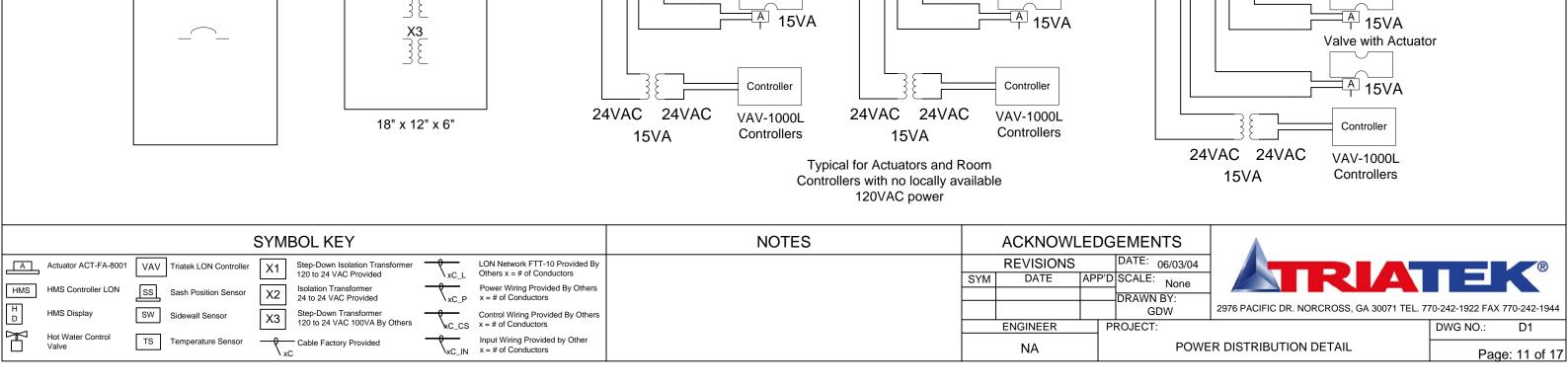
NA Single Supply, General Exhaust & 2 Hood Typical

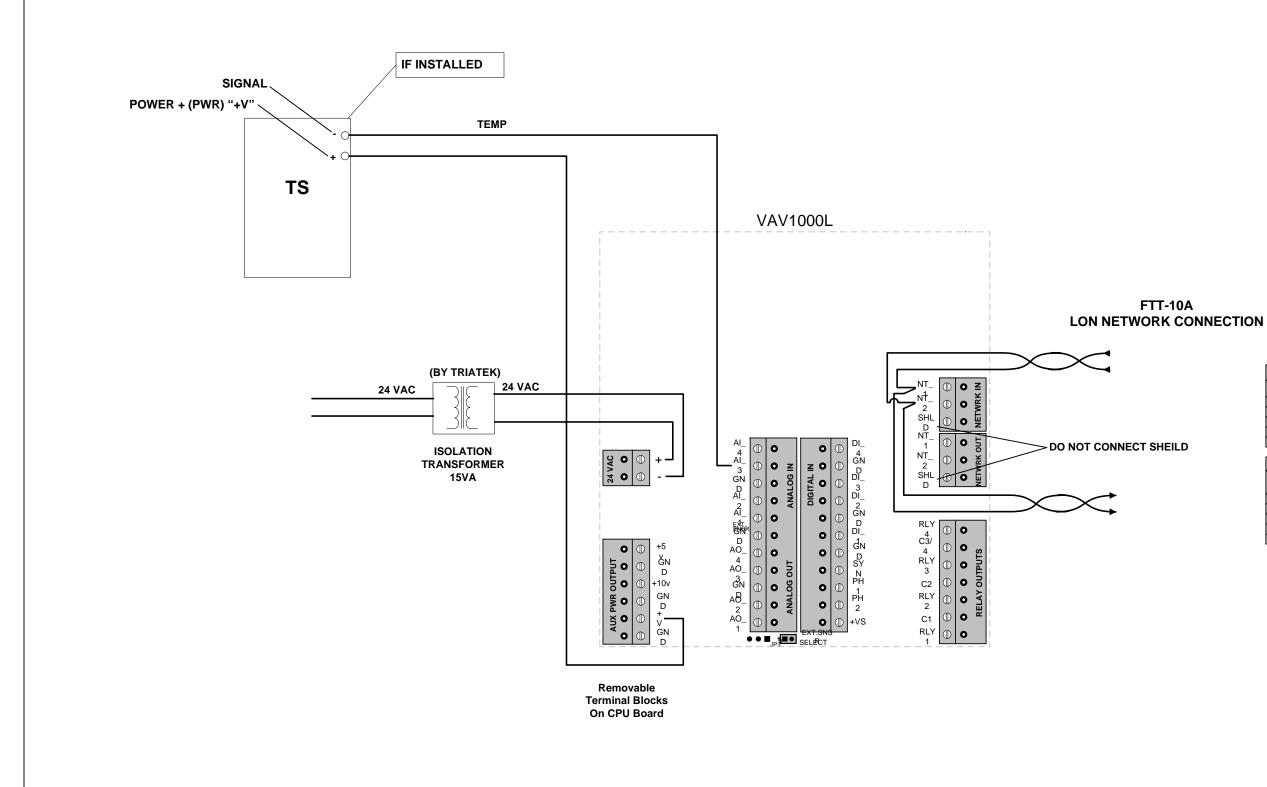

Page: 9 of 17

T5

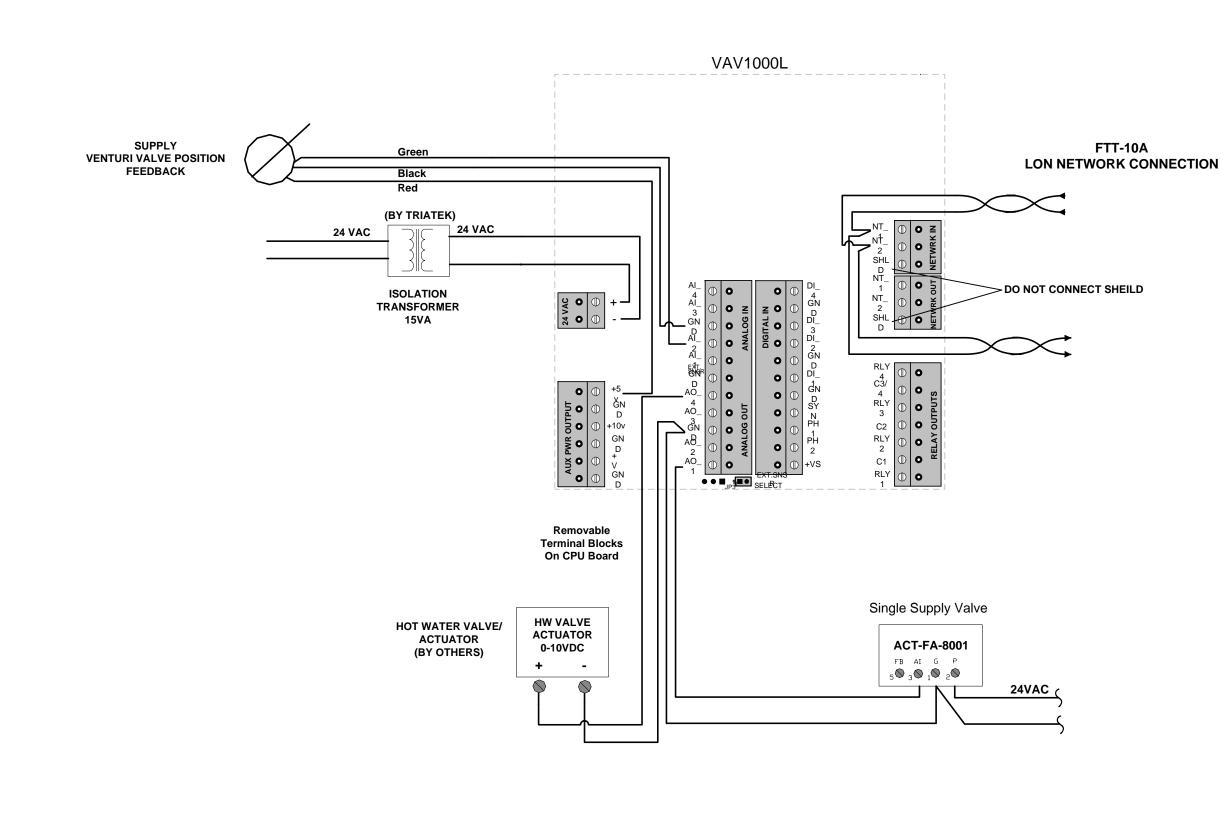

DWG NO.:


- #4. 2 Pair, #20 AWG, Twisted/Shield, Tinned/Stranded Copper (Low Voltage)
- #5. 3 Conductors (120vac power)
- #6. 3 Conductor, #18 AWG, THHN, Stranded Copper (24VDC power/input)




Power Distribution for Triatek HMS1600L, VAV-1000L and Actuators

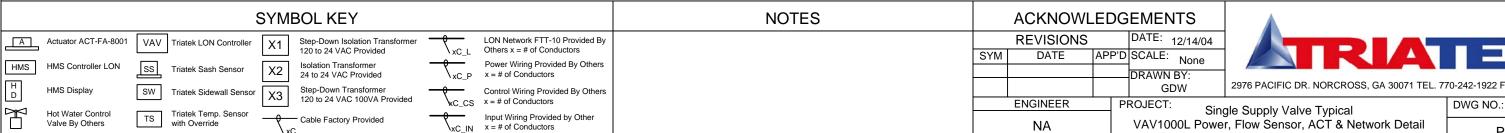
Typical for HMS Controller with 120VAC available locally



Doubly-Terminated Bus Topology Specifications					
Cable Type Maximum bus length Units					
Belden 85102	2700	Meters			
Belden 8471	2700	Meters			
Level IV, 22AWG	1400	Meters			
JY(St) Y 2x2x0.8	900	Meters			
TIA Category 5	900	Meters			

Free Topology Specifications						
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units			
Belden 85102	500	500	Meters			
Belden 8471	400	500	Meters			
Level IV, 22AWG	400	500	Meters			
JY(St) Y 2x2x0.8	320	500	Meters			
TIA Category 5	250	450	Meters			

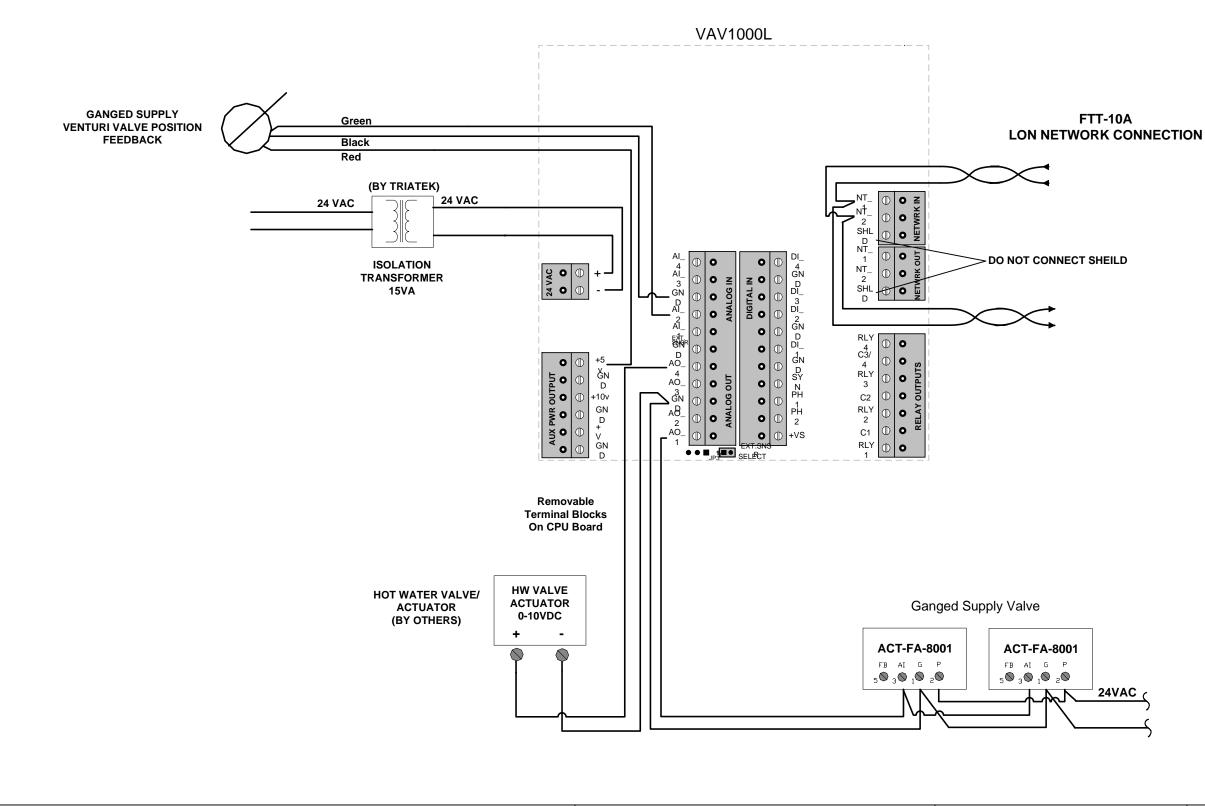
Refer to www.lonmark.org for more details.


SYMBOL KEY	NOTES	ACKNOW	LEDGEMENTS			
Actuator ACT-FA-8001 VAV Triatek LON Controller X1 Step-Down Isolation Transformer 120 to 24 VAC Provided VxC_L Others x = # of Conductors HMS HMS Controller LON SS Triatek Sash Sensor X2 Isolation Transformer Power Wining Provided By Others		REVISIONS SYM DATE	DATE: 12/14/04 APP'D SCALE: None	TRIA	TEK	®
HMS Controller LON SS Triatek Sash Sensor X2 Isolation Transformer 24 to 24 VAC Provided HMS Display SW Triatek Sidewall Sensor X3 Step-Down Transformer 120 to 24 VAC 100VA Provided X6 Step-Down Transformer 120 to 24 VAC 100VA Provided X7 Step-Down Transformer 120 to 24 VAC 100VA Provided X8 Step-Down Transformer 120 to 24 VAC 100VA Provided		ENGINEER	DRAWN BY: GDW PROJECT:	2976 PACIFIC DR. NORCROSS, GA 30071 TEL. 7	770-242-1922 FAX 770-242-1	
Hot Water Control Valve By Others Tiatek Temp. Sensor with Override Cable Factory Provided TC Valve		NA		wer, Temp. Sensor & Network Detail	Page: 12 of	

Doubly-Terminated Bus Topology Specifications					
Cable Type Maximum bus length Units					
Belden 85102	2700	Meters			
Belden 8471	2700	Meters			
Level IV, 22AWG	1400	Meters			
JY(St) Y 2x2x0.8	900	Meters			
TIA Category 5	900	Meters			

Free Topology Specifications							
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units				
Belden 85102	500	500	Meters				
Belden 8471	400	500	Meters				
Level IV, 22AWG	400	500	Meters				
JY(St) Y 2x2x0.8	320	500	Meters				
TIA Category 5	250	450	Meters				

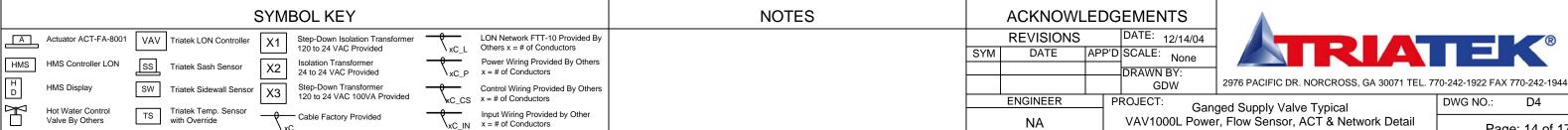
Refer to www.lonmark.org for more details.

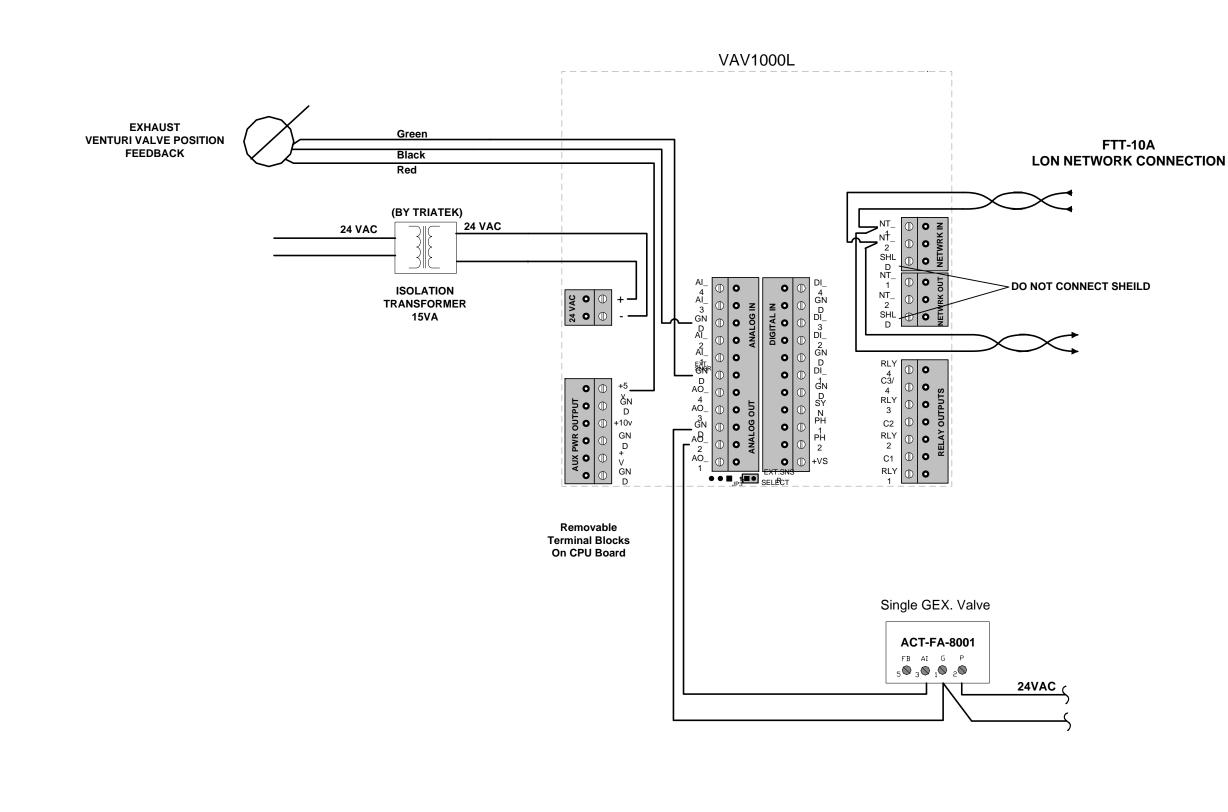


2976 PACIFIC DR. NORCROSS, GA 30071 TEL. 770-242-1922 FAX 770-242-1944

VAV1000L Power, Flow Sensor, ACT & Network Detail

Page: 13 of 17

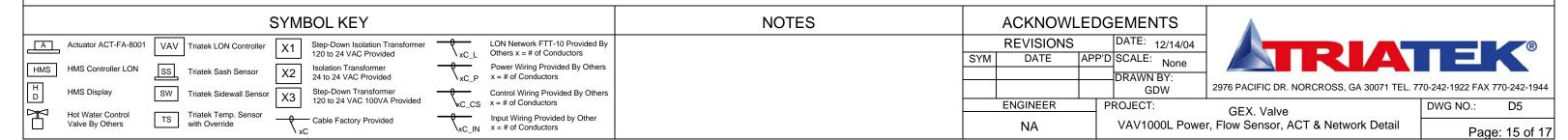


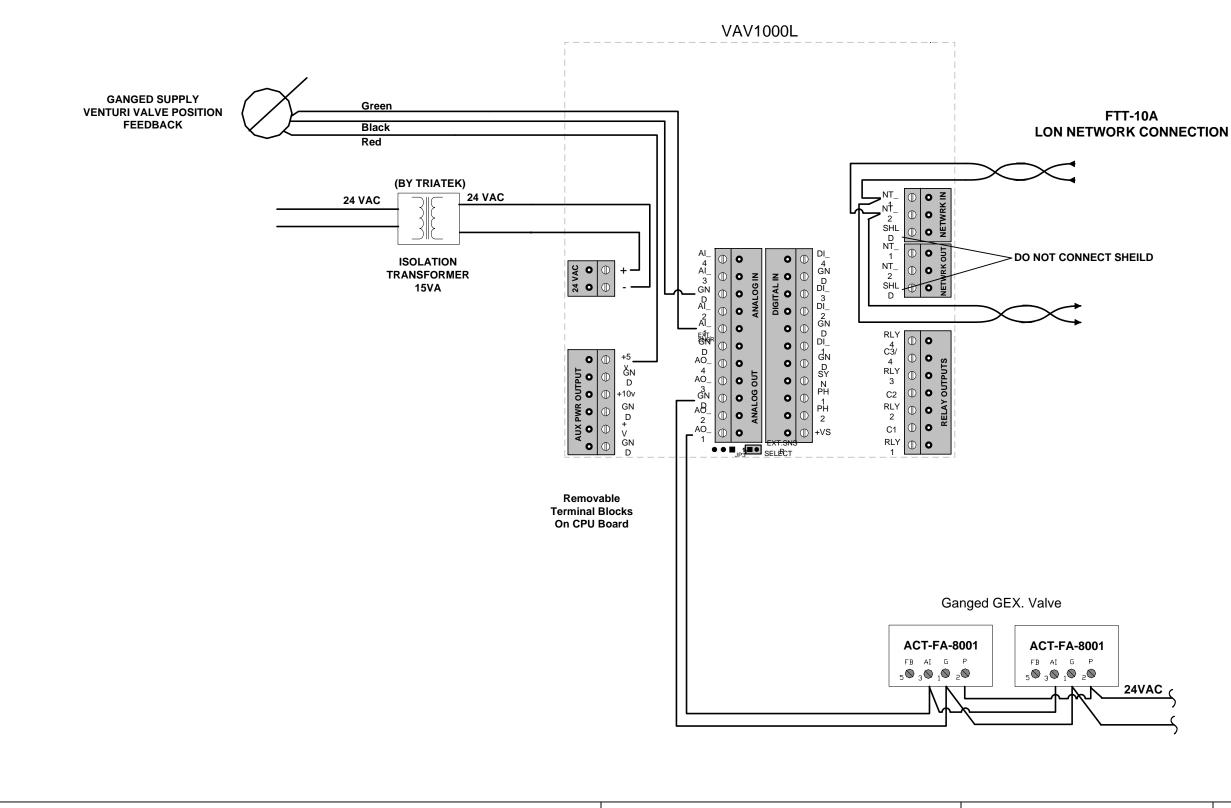

Doubly-Terminated Bus Topology Specifications			
Cable Type Maximum bus length Units			
Belden 85102	2700	Meters	
Belden 8471	2700	Meters	
Level IV, 22AWG	1400	Meters	
JY(St) Y 2x2x0.8	900	Meters	
TIA Category 5	900	Meters	

Free Topology Specifications			
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units
Belden 85102	500	500	Meters
Belden 8471	400	500	Meters
Level IV, 22AWG	400	500	Meters
JY(St) Y 2x2x0.8	320	500	Meters
TIA Category 5	250	450	Meters

Page: 14 of 17

Refer to www.lonmark.org for more details.

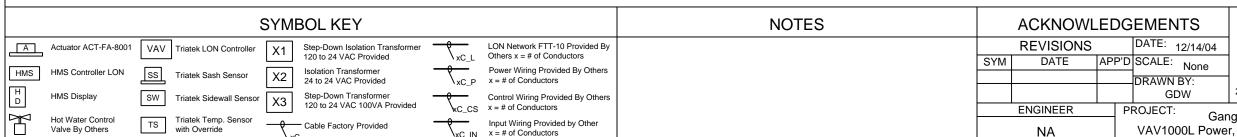




Doubly-Terminated Bus Topology Specifications		
Cable Type	Maximum bus length	Units
Belden 85102	2700	Meters
Belden 8471	2700	Meters
Level IV, 22AWG	1400	Meters
JY(St) Y 2x2x0.8	900	Meters
TIA Category 5	900	Meters

Free Topology Specifications			
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units
Belden 85102	500	500	Meters
Belden 8471	400	500	Meters
Level IV, 22AWG	400	500	Meters
JY(St) Y 2x2x0.8	320	500	Meters
TIA Category 5	250	450	Meters

Refer to www.lonmark.org for more details.



Doubly-Terminated Bus Topology Specifications		
Cable Type Maximum bus length		Units
Belden 85102	2700	Meters
Belden 8471	2700	Meters
Level IV, 22AWG	1400	Meters
JY(St) Y 2x2x0.8	900	Meters
TIA Category 5	900	Meters

Free Topology Specifications			
Cable Type	Maximum node-to- node distance	Maximum total Wire length	Units
Belden 85102	500	500	Meters
Belden 8471	400	500	Meters
Level IV, 22AWG	400	500	Meters
JY(St) Y 2x2x0.8	320	500	Meters
TIA Category 5	250	450	Meters

Refer to www.lonmark.org for more details.

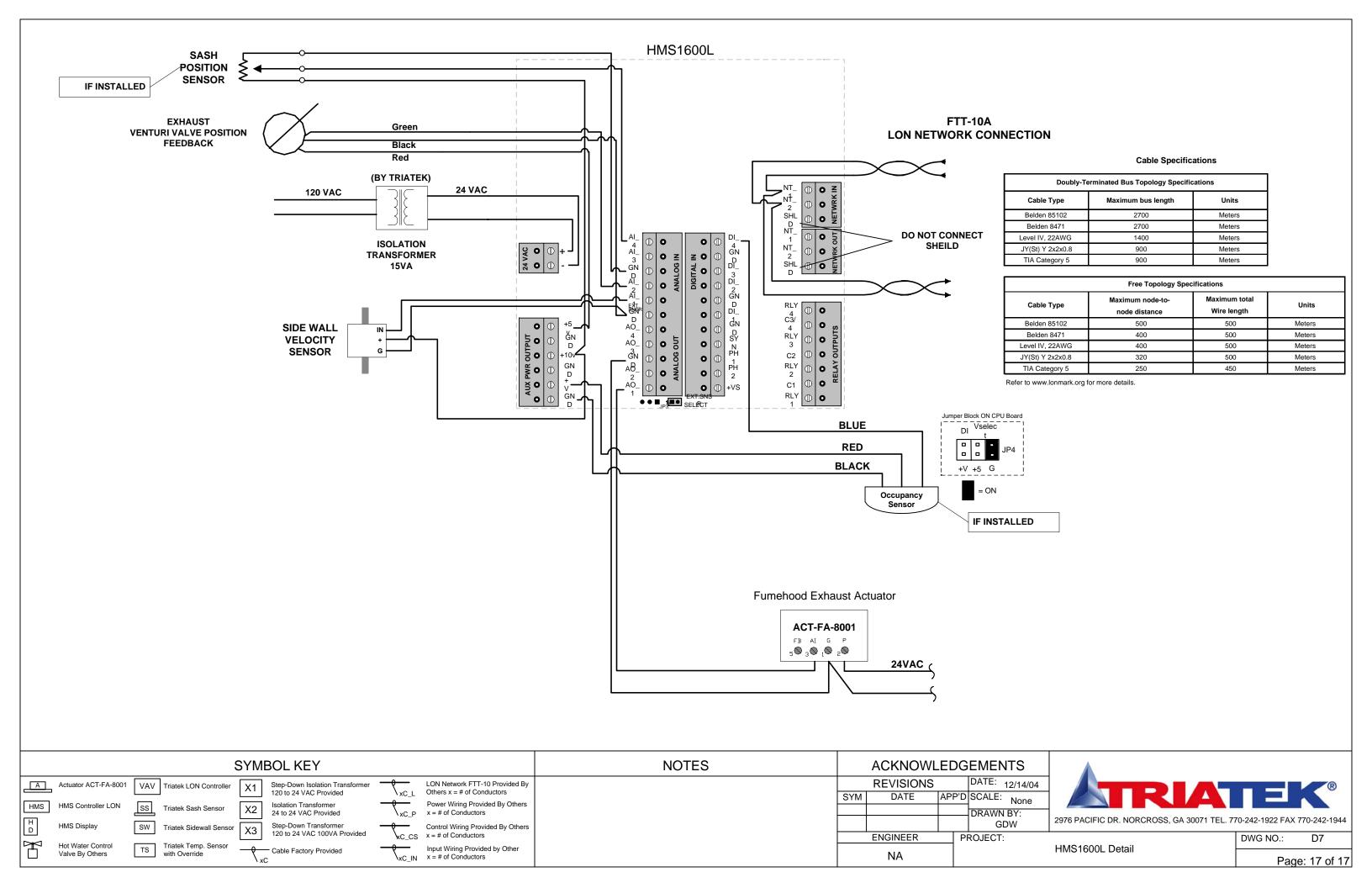
Input Wiring Provided by Other x = # of Conductors

Hot Water Control Valve By Others

Triatek Temp. Sensor

with Override

Cable Factory Provided



2976 PACIFIC DR. NORCROSS, GA 30071 TEL. 770-242-1922 FAX 770-242-1944

PROJECT: Ganged GEX. Valve Typical VAV1000L Power, Flow Sensor, ACT & Network Detail NA

DWG NO.:

Page: 16 of 17

